The first phase of the Dosewallips Estuary Restoration Project was completed in fall 2004. Over forty WT staff and volunteers pitched in to remove an earthen dike from the tidal salt marsh of the Dosewallips estuary. More than 350 cubic yards of spoils were removed using hand tools and light machinery. By not utilizing heavy machinery to take out the dike, the restoration project had less impact on the sensitive soils of the salt marsh wetlands. This meant that the project took over six weeks to complete, but the fall weather cooperated by remaining mild for the duration of the project. Planning for the second phase of the project was initiated in winter 2004-2005.
Over forty WT staff and volunteers pitched in to remove an earthen dike from the tidal salt marsh. Using hand tools and light machinery. By not utilizing heavy machinery to take out the dike, the project took over six weeks to complete, but the fall weather cooperated by remaining mild for the duration of the project. Planning for the second phase of the project was initiated in winter 04-05.
The Dosewallips Estuary Restoration is a cooperative project being managed by Washington Trout. Project partners include the Dosewallips State Park, Port Gamble S’Klallam Tribe, Hood Canal Coordinating Council, Point No Point Treaty Council, Washington Department of Fish and Wildlife, and Jefferson County. The project will restore the natural structures and functions of the lower Dosewallips River. It is hoped that restoring these natural elements of the ecosystem will aid in the recovery of depleted wild-fish populations in the Dosewallips River, including Puget Sound chinook and Hood Canal summer chum salmon, both listed as Threatened under the Endangered Species Act.

Phase One

The ultimate restoration objectives of the project include reestablishing connectivity of the lower river to its floodplain and distributary network, improving tidal circulation in the blind channels of the salt marsh, and assisting in the development of native forest in the upper tidal fringes of the estuary. Phase One of the project focused on enhancing tidal circulation and native forest establishment while phase two will work to reconnect the lower mainstem Dosewallips to its historic floodplain.

The dike was removed virtually one handful at a time, using shovels and a mini-excavator to load wheel barrows. The wheel barrows were then walked along the footprint of the dike, across a network of temporary wooden scaffolds and bridges that protected tidal channel banks, wetland soils, and native salt marsh vegetation, to a small dump trailer located in a central staging area. From the staging area, a small tractor hauled the spoils off of the salt marsh. The tractor traveled via a temporary road constructed of cedar bark chips known as hog fuel. Limiting tractor and wheel barrow traffic to the footprint of the dike, the wooden scaffolding network and the hog fuel road minimized compaction and damage to wetland soils in the project area.

All of this extra care required an intensive amount of people power. The project would not have been possible without a heroic and effective effort by Americorps crews from the Washington Conservation Corps and the Northwest Service Academy. The young volunteers put in long hard hours sweating over shovels and wheelbarrows, making the low-impact restoration possible.
banks, constricting the river’s flows, sediments, and energy, resulting in a homogenous linear channel that can not retain the large woody debris needed to create adequate habitat complexity.

Reach-Analysis recommendations included selectively removing rip rap and dredge spoils at the mouths of remnant distributary channels, and engineering log jams to encourage high water to flow overbank into the floodplain of the lower river. Reconnecting remnant distributary channels will increase habitat diversity and complexity in the lower river, providing the varied habitats that benefit both juvenile and adult salmon. The engineered log jams will restore habitat structure that is missing from the ecosystem and will facilitate habitat forming processes such as overbank flow, large woody debris recruitment, and channel meander.

Over the 04-05 winter, Washington Trout and the Port Gamble S’Klallam Tribe applied to the Bureau of Indian Affairs (BIA) for additional funds to implement the recommendations of the Reach Analysis, and have learned that the second phase of the project has been approved for funding by the BIA. Planning and permitting for phase two of the project will occur through the winter of 2006, and restoration actions will occur in the summer of 2006.